Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Active matter taps into external energy sources to power its own processes. Systems of passive particles ordinarily lack this capacity, but can become active if the constituent particles interact with each other nonreciprocally. By reformulating the theory of classical wave-matter interactions, we demonstrate that interactions mediated by scattered waves generally are not constrained by Newton's third law. The resulting center-of-mass forces propel clusters of scatterers, enabling them to extract energy from the wave and rendering them active. This form of activity is an emergent property of the scatterers' state of organization and can arise in any system where mobile objects scatter waves. Emergent activity flips the script on conventional active matter whose nonreciprocity emerges from its activity, and not the other way around. We combine theory, experiment, and simulation to illustrate how emergent activity arises in wave-matter composite systems and to explore the phenomenology of emergent activity in experimentally accessible models. These preliminary studies suggest that heterogeneity is a singular perturbation to the dynamics of wave-matter composite systems, and induces emergent activity under all but the most limited circumstances.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Acoustic trapping uses forces exerted by sound waves to transport small objects along specified trajectories in three dimensions. The structure of the time-averaged acoustic force landscape acting on an object is determined by the amplitude and phase profiles of the sound's pressure wave. These profiles typically are sculpted by deliberately selecting the amplitude and relative phase of the sound projected by each transducer in large arrays of transducers, all operating at the same carrier frequency. This approach leverages a powerful analogy with holographic optical trapping at the cost of considerable technical complexity. Acoustic force fields also can be shaped by the spectral content of the component sound waves in a manner that is not feasible with light. The same theoretical framework that predicts the time-averaged structure of monotone acoustic force landscapes can be applied to spectrally rich sound fields in the quasistatic approximation, creating opportunities for dexterous control using comparatively simple hardware. We demonstrate this approach to spectral holographic acoustic trapping by projecting acoustic conveyor beams that move millimeter-scale objects along prescribed paths. Spectral control of reflections provides yet another opportunity for controlling the structure and dynamics of an acoustic force landscape. We use this approach to realize two variations on the theme of a wave-driven oscillator, a deceptively simple dynamical system with surprisingly complex phenomenology.more » « less
-
Andrews, David L; Galvez, Enrique J; Rubinsztein-Dunlop, Halina (Ed.)A quarter century of progress in holographic optical trapping has yielded fundamental advances in the science of classical wave-matter interactions. These efforts have drawn attention to the connection between wavefront topology and wave-mediated forces, including the interrelated roles of orbital and spin angular momentum, and the interplay between conservative intensity-gradient forces and non-conservative phase-gradient forces. Holographically structured force landscapes can act as knots, micromachines and even tractor beams and have permeated application areas ranging from biomedical research to quantum computing. Lessons learned from holographic optical trapping recently have been applied to acoustic micromanipulation, with remarkable effect. Beyond an overall leap in the force scales that can be achieved with sound, advances in acoustic trapping are casting new light on the nature of wave-matter interactions, including the role of nonreciprocal wave-mediated interactions in creating novel states of organization.more » « less
-
Observations of power laws in neural activity data have raised the intriguing notion that brains may operate in a critical state. One example of this critical state is "avalanche criticality," which has been observed in a range of systems, including cultured neurons, zebrafish, and human EEG. More recently, power laws have also been observed in neural populations in the mouse under a coarse-graining procedure, and they were explained as a consequence of the neural activity being coupled to multiple latent dynamical variables. An intriguing possibility is that avalanche criticality emerges due to a similar mechanism. Here, we determine the conditions under which dynamical latent variables give rise to avalanche criticality. We find that a single, quasi-static latent variable can generate critical avalanches, but that multiple latent variables lead to critical behavior in a broader parameter range. We identify two regimes of avalanches, both of which are critical, but differ in the amount of information carried about the latent variable. Our results suggest that avalanche criticality arises in neural systems in which there is an emergent dynamical variable or shared inputs creating an effective latent dynamical variable, and when this variable can be inferred from the population activity.more » « less
An official website of the United States government

Full Text Available